עמוד זה מציג את כל האירועים המתרחשים במחלקה השבוע. ניתן לבחור שבוע אחר, או תאריכים שונים, בשדות בתחתית העמוד.

אשנב למתמטיקה

מה הקשר בין תהליכי סיעוף לכורי כח?!?

אוק 23, 18:30-20:00, 2017, אולם 101-

מרצה

חן דובי

תקציר

תהליכי סיעוף (branching processes) הינו תהליך סטוכסטי $Z_n$ המקיים את תנאי האבולוציה , כאשר משתנה מקרי (כל המושגים הדרושים יוסברו במהלך ההרצאה).

הניתוח המתמטי לתהליכי סיעוף החל בעבודתם הסמינאלית של Galton ו-Watson (1875), שניסו להסביר מדוע בתי האצולה באנגליה הוויקטוריטנית נעלמים, אך עם השנים הפכו תהליכי סיעוף ענף שלם במתמטיקה שימושית, עם הרחבות רבות למודל הבסיס של Galton  ו-Watson.

בעשורים האחרונים זוכים תהליכי סיעוף לפופולאריות רבה במגוון תחומים של מדע והנדסה, החל מכימיה פיסיקאלית וביולוגיה חישובית ועד כלכלה, אפידמיולוגיה וסוציולוגיה, וזאת לאחר הצלחת המודל לניבוי אפקטיבי של גדלים אופיינים (התפלגות גודל אוכלוסיה, סיכוי שרידות/הכחדה, זמן חיים ממוצע ועוד).

בהרצאה נציג תהליכי סיעוף מנקודת מבט קצת פחות ידועה: כיצד ניתן לתאר את התפלגות ההספק של כורים גרעיניים? נתאר (פיסיקאלית ומתמטית) את התכונות והבעיות האופיניות לתהליכי סיעוף בכורים גרעיניים, ואת המודלים והשיטות הקלאסיים לניתוח והתמודדות עם הבעיות (שיטות שאת כולן למדתם בשנתיים הראשונות באוניברסיטה, אבל בעיקר שאלתם את עצמכם “מה, לעזאזל, עושים אם זה?!?”) .

כמו כן, נציג מספר שאלות פתוחות בעלות חשיבות הנדסית לא זניחה, ונציג ניסיון לפתור את הבעיות על ידי שימוש באחת התורות המתמטיות הבולטות ביותר של המאה ה-20: משוואות דיפרנציאליות סטוכסטיות וחשבון איטו (Ito calculus).

קולוקוויום

Holography of traversing flows and its applications to the inverse scattering problems

אוק 24, 14:30-15:30, 2017, Math -101

מרצה

Gabriel Katz (MIT)

תקציר

We study the non-vanishing gradient-like vector fields $v$ on smooth compact manifolds $X$ with boundary. We call such fields traversing.

With the help of a boundary generic field $v$, we divide the boundary $\d X$ of $X$ into two complementary compact manifolds, $\d^+X(v)$ and $\d^-X(v)$. Then we introduce the causality map $C_v: \d^+X(v) \to \d^-X(v)$, a distant relative of the Poincare return map.

Let $\mathcal F(v)$ denote the oriented 1-dimensional foliation on $X$, produced by a traversing $v$-flow.

Our main result, the Holography Theorem, claims that, for boundary generic traversing vector fields $v$, the knowledge of the causality map $C_v$ is allows for a reconstruction of the pair $(X, \mathcal F(v))$, up to a homeomorphism $\Phi: X \to X$ which is the identity on the boundary $\d X$. In other words, for a massive class of ODE’s, we show that the topology of their solutions, satisfying a given boundary value problem, is rigid. We call these results ``holographic” since the $(n+1)$-dimensional $X$ and the un-parameterized dynamics of the flow on it are captured by a single correspondence $C_v$ between two $n$-dimensional screens, $\d^+X(v)$ and $\d^-X(v)$.

This holography of traversing flows has numerous applications to the dynamics of general flows. Time permitting, we will discuss some applications of the Holography Theorem to the geodesic flows and the inverse scattering problems on Riemannian manifolds with boundary.

גאומטריה אלגברית ותורת המספרים

Injective modules in higher algebra

אוק 25, 15:10-16:30, 2017, Math -101

מרצה

Liran Shaul (Ben Gurion University )

תקציר

Injective modules are fundamental in homological algebra over rings. In this talk, we explain how to generalize this notion to higher algebra. The Bass-Papp theorem states that a ring is left noetherian if and only if an arbitrary direct sum of left injective modules is injective. We will explain a version of this result in higher algebra, which will lead us to the notion of a left noetherian derived ring. In the final part of the talk, we will specialize to commutative noetherian rings in higher algebra, show that the Matlis structure theorem of injective modules holds in this setting, and explain how to deduce from it a generalization of Grothendieck’s local duality theorem over commutative noetherian local DG rings.


תאריכים אחרים